
Flächenpolen bestimmter Indizierung. Die Win-
kelzählung beginnt am Nordpol mit # = 0 und an 
der linken Seite des Äquators mit cp = 0. Die Unter-
scheidung der (1 1 1)- von den (1 1 5)-Richtungen 
sowie die Einzeichnung der Großkreise, deren 
Schnittpunkte die restlichen Kristallachsen liefer-
ten, wurde durch folgende Tatsachen leicht ge-
macht: 

1. Jeder (1 0 0)-Pol ist von vier (1 1 5)-Polen 
umgeben, die untereinander den Abstand von 
22°11' (bzw. von 31°35' in der Diagonalen) und 
gegen den (1 0 0)-Pol in der Mitte den Abstand 
von 15°47' besitzen. 

2. Je zwei (1 0 0)-Pole, zwei (1 1 0)-Pole, vier 
(1 1 l)-Pole und vier (1 1 5)-Pole liegen auf einem 
Zonenkreis, der einen [1 1 0]-Pol als Zonenachse 
hat. (Die Hälfte davon erscheint auf der Projek-
tion.) 

3. Je vier (1 0 0)-Pole und vier (1 1 0)-Pole lie-
gen auf einem Zonenkreis, der einen [1 0 0]-Pol 

als Zonenachse hat. (Die Hälfte davon erscheint 
auf der Projektion.) 

Als Schnittpunkte der Großkreise ergaben sich 
die Normalen der Würfel- und Dodekaederebenen. 

Somit war die Lage sämtlicher wichtigen Netz-
ebenennormalen in bezug auf ein körperfestes 
Koordinatensystem angegeben, d. h. die Orientie-
rung des Einkristalls war vollständig bestimmt. 

Man kommt natürlich i. a. mit weniger Meß-
werten aus. So wurden in praktischen Fällen je-
weils etwa acht Reflexe ausgemessen. Hierfür und 
für die dargestellte einfache Weise der vollstän-
digen Orientierungsbestimmung benötigt man 
dann bei einiger Übung insgesamt rund eine halbe 
Stunde Zeit. 

Wir danken Herrn Professor Dr. E. K a p p l e r für 
die Bereitstellung der Institutsmittel. Unser Dank ge-
bührt auch der N o t g e m e i n s c h a f t der Deutschen 
Wissenscha f t für die Überlassung der Röntgen-
apparatur. 

N O T I Z E N 

Die elektrostatische Methode und das kombinierte 
Näherungsverfahren 

Von H. Preuß 
Max-Planck-Institut für Physik, Göttingen 

(Z. Naturforschg. 10a, 165—166 [1955]; eingeg. am 28. Januar 1955) 

Von Hur ley 1 wurde vor einiger Zeit die elektro-
statische Methode zur Berechnung von chemischen 
Bindungsenergien und -abständen diskutiert. Die auf 
einen Kern a eines zweiatomigen Moleküls wirkende 
Kraft ergab sich dort zu 

J L _ f 
R> J ra3 ftn = p dr ( 1 ) 

mit R als Kernabstand (9? = Vektor) und ra, ra als Ab-
stand und Vektor des Integrationspunktes vom Kern a. 
Die Dichte Verteilung o wurde aus der normierten Ge-
samtmolekülfunktion if durch 

0 = 271 vv* (2) 

erhalten, indem im i-ten Integral über alle Koordina-
ten der Elektronen außer denen des i-ten integriert 
wird. Der erste Term in fl) stellt die Abstoßungskraft 
der Kerne dar. 

Dieses Verfahren gestattet eine allgemeinere Formu-
lierung für die auf den Kern a in Richtung der Kern-
verbindungslinie wirkende Kraft KA 

1 f cF(ra) 
* a = ^ - J - ^ c o s » a e d r , (3) 

wobei der Winkel zwischen ra und 9t ist und U(ra) 
das Potential des Kerns a bedeutet. 

Im Gleichgewichtsfall des Moleküls ist K a = 0 für 
R = Rn und die Bindungsenergie E ergibt sich zu 

E oV(rA) cos #a odrdR (4) 
ÄO 

Die Vorteile dieser Methode bestehen im alleinigen Auf-
treten von Überlappungs- und Übergangsintegralen2. 
Zur Aufstellung der Dichte Q muß allerdings schon 
eine gewisse Kenntnis über y> vorliegen. Der Zusam-
menhang dieses Berechnungsverfahrens mit anderen 
Methoden ist von Hur ley 1 ausführlich behandelt wor-
den. 

Hier soll nur darauf hingewiesen werden, daß diese 
Methode eine Erweiterung auf Vielelektronensysteme 
mit Hilfe des kombinierten Näherungsverfahrens3 ge-
stattet. Im letzten wird die geforderte Orthogonalität 
der Eigenfunktionen der Valenzelektronen auf denen 
der Rumpfelektronen durch eine Zusatzkraft ersetzt, 

1 A. C. Hur ley . Proc. Rov. wSoc. (A) 226, 170, 179, 
193 [1954]. 

2 Bezüglich der Integralbezeichnungen s. z. B. H. J. 
K o p i n e c k , Z. Naturforschg. 5a. 420 [1950]. 

3 II. Hel lmann, J. chem. Phys. 3, 61 [1935]; Acta 
Physicochimica URSS 1, 913 [1935]. 
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die auf die Valenzelektronen wirkt und diese nach 
außen drückt. He l lmann und Kassa to t s chk in 4 

setzten für das Zusatzpotential die analytische Form 
A 

V(r) =—er- 2*r (5) 

an und bestimmten A und x so, daß die erhaltenen 
Energiewerte mit den entsprechenden Werten für das 
vorliegende freie Atom (Alkali) einigermaßen überein-

4 H. Hel lmann u. W. Kassato t s chk in . 
Phvsicochimica 5. 23 [1936]. 

Acta 

stimmten. Die daraus zu bildende gesamte Kraft zwi-
schen Kern a und Elektron 

A 2 A x 
e 2 KA, _j g—2 xr„ 

ra2 ' ra ) -/ ** 

ra g"F(ra) 
r & 

(6) 

kann jetzt in (3) bzw. (4) eingeführt werden und ge-
stattet somit in dieser Form eine Anwendung der er-
weiterten elektrostatischen Methode auf Vielelektro-
nensysteme, wobei zur Bildung von o nach (2) nur die 
Valenzelektronen berücksichtigt zu werden brauchen. 

Zur Theorie des Nernst-Effekts bei ferromagnetischen 
Metallen 

Von K. Meyer 
Theoret. Physik. Institut der Universität Jena 

(Z. 'Naturforschg. 10a, 166 [1955]; eingeg. am 31. Januar 1955) 

Bekanntlich gilt für den Hall-Effekt der Ferromag-
netika 

Ey = (R0 Hz + R, Mz) Jx; 
R0 und i?j sind die beiden Haff-Konstanten, Jx, Ey, 
Hz, Mz die Komponenten von Stromdichte, elektri-
scher Feldstärke, magnetischer Feldstärke im Innern 
der Probe und Magnetisierung in Bichtung der x-, .?/-, 
bzw. z-Achse eines rechtwinkligen kartesischen Koor-
dinatensystems. Nach Messungen von Genkin und 
P r i p o r o w a 1 scheint für den Nernst-Effekt eine ähn-
liche Beziehung zu bestehen: 

Ey = - (Q.H. + Q.M,)^-

(T absolute Temperatur). Für die Hall-Konstante Rx 
wurde kürzlich von Karp lus und Lut t inger 2 eine 
Theorie angegeben, während das Verhalten von R0 mit 
Hilfe der üblichen Leitfähigkeitstheorie unter Verwen-
dung eines Zweibändermodells mit hinreichender Ge-
nauigkeit erklärt werden kann3. Es soll darauf hin-
gewiesen werden, daß sich die Konstante des iso-
thermen Nernst-Effekts ohne Schwierigkeit aus der 
Theorie der Hall-Konstanten Rx gewinnen läßt. Es 
wird ein Zweibändermodell analog dem von Sond-
heimer und W i l s o n 4 zugrunde gelegt: Das Band 1 
soll fast leer, das Band 2 fast besetzt sein. 

Die Bedingungen, unter denen der isotherme Nernst-
Effekt gemessen wird, sind Jx = 0, dTjdx 4=0, Jy = 0, 
8 T/8y — 05. Für die Komponenten der elektrischen 
Stromdichte erhält man 

e2 x 8 T 
Jx=aEm + — 'F{rvx,•,) — (I.e.6), 

Jy = oEy + rMzEx (I.e.2), 
wenn die Feldabhängigkeit der Konstanten nicht 
betrachtet und der von Hz herrührende Anteil weg-

1 N. M. Genkin u. G. P. P r i p o r o w a . Zh. eksper. 
teor. Fiz. 26, 323 [1954]. 

2 R. Karp lus u. J. M. Lut t inger , Phvs. Rev. 95. 
1154 [1954]. 

3 E. M. Pugh u. N. R o s t o k e r , Rev. Mod. Phvs. 
25, 151 [1953]. 

gelassen wird. Dabei bedeuten o die elektrische, x die 
Wärmeleitfähigkeit, e die Ladung des Elektrons, 
/• eine temperaturunabhängige Konstante, r1? r2 die 
Stoßzeiten in beiden Bändern, 

n, I 8 x, 5 t, \ n2 I 8 x9 5 r, \ 
m-i \ 8Ci 4 Ci / »h \8£2 4 C2 / 

/jj die Anzahl der Elektronen im Band 1, n2 die Anzahl 
der Löcher im Band 2, m1, m2 die effektiven Massen 
und C2 die Fermi-Grenzenergien in beiden Bändern 
in der Bezeichnung von Wi fson 4 . Beachtet man die 
Bedingungen Jx — 0 und Jy = 0, so ergibt sich 

Ey e3 r x 
Qi ~ = Z3 F fTi» Ts) ' 

M. 
8T 

z 8x 
während für die Hall-Konstante Rx gilt 

= U . C . 3 ) . o 
Die Temperaturabhängigkeit von Qt sollte also der von 
Rx ähnlich sein. Es interessiert noch das Verhältnis von 
Qu und Q}, wobei angenommen wird, daß Qu durch die 
übliche Theorie der transversalen thermomagnetischen 
Effekte beschrieben werden kann. Zur rohen Abschät-
zung mag angenommen werden, daß der Beitrag des 
Bandes 1 zu F (r1; r2) dominiert (das braucht im reafen 
Fall nicht erfüllt zu sein, dürfte aber im allgemeinen 
nur das Vorzeichen, nicht die Größenordnung von Qx 
berühren), ferner möge gelten xx~ £x« (1. c.4), q in der 
Größenordnung 1; man hat weiter für ein Einbänder-
modell mit Elektronenleitung 

x e2 8xx 
a mc 8 £1 

Sieht man diesen angegebenen Ausdruck als charak-
teristisch für die Größenordnung von an, so gilt 

(1. c. 

Qi 
Qo 

: 2 I r 
en, c 

d. h. die beiden Konstanten Qt und Q„ unterscheiden 
sich etwa um die gleiche Größenordnung wie die bei-
den Hall-Konstanten Rx und R0. 

4 A. H. Wi l son , The Theorv of Metals. Cambridge 
1953. 

5 L. Br i l lou in , Quantenstatistik, Berlin 1931. 
6 Diese Gleichung ergibt sich aus Gl. (8.53.1) bei 

Wilson 1. c.4 unter den hier angegebenen Vorausset-
zungen. Dabei wird Gebrauch von dem Wiedemann-
Franzschen Gesetz gemacht. 


